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AFIT/GNE/ENP/11-M06 

 

Abstract 

 Carbon nanotubes (CNT) and carbon nanofibers (CNF) are two nanoparticles 

incorporated in a polymer to create a composite material.  These composites are two 

potential lightweight materials for use as replacements for aluminum structures on 

satellite systems.  Both composite materials have the low resistivity that is consistent with 

conductive materials.  However, the CNT composite is substantially more conductive 

than the CNF composite.  The CNT and CNF composites were irradiated with electrons 

and neutrons to fluence levels of 16 21 10 /e cm and 14 21.11 10 /neutrons cm .  No 

changes were observed in the resistivity of the CNF composites following neutron and 

electron irradiation. A 3.7% increase in resistivity was observed for the CNT composite 

following neutron irradiation and a 25.5% increase in resistivity following electron 

irradiation.  An additional electron irradiation was conducted on both composites to a 

fluence of 16 26 10 /e cm .  Again, no change in resistivity was observed in the CNF 

composites, while an 8.1% increase in resistivity was observed in the CNT composite.  In 

addition, the CNT composite resistivity recovered after 240 hours while at room 

temperature.  A neutron irradiation was conducted on both composites to a fluence of 

16 24 10 /neutrons cm .  No change in the resistivity was observed in the CNF composite, 

while a steady increase in resistivity was observed in the CNT composites as a function 

of neutron dose.   
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CHANGES TO ELECTRICAL CONDUCTIVITY IN IRRADIATED CARBON 

NANOCOMPOSITES 

 

I.  Introduction 

1.1 Background 

Advanced composite materials have been investigated to reduce the cost and increase 

the functionality of space systems.  The satellite bus, historically made from aluminum, is 

under consideration for incorporation of advanced composites.  Aluminum, a conducting 

metal, has the appropriate strength and conductive properties to protect the internal 

components of a satellite system. The disadvantage of aluminum is its weight.  Therefore, 

lightweight reinforced carbon composites have been identified to replace the aluminum 

bus.  The fiber composites and polymers meet the thermal and mechanical requirements 

for space use, but do not necessarily meet the requirements of protection from 

electromagnetic and high energy radiation effects.  By incorporating conductive 

nanofiller material into the composites and adhesives, the mechanical, thermal, and 

electrical properties are enhanced. The nanofillers decrease the resistive properties of the 

composite sufficient to meet electromagnetic design requirements while maintaining the 

substantial weight savings over aluminum.   

 Over time, dielectric materials potentially build up large charge differentials in the 

space environment.  If there is no mechanism for relaxing the material back to charge 

equilibrium, the potential difference eventually supersedes the material’s ability to 
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contain the charge and the material breaks down.  When the material breaks down, it 

releases its charge through an electrostatic discharge (ESD).   ESD is a parasitic 

phenomena experienced by all materials in space to varying degrees of destructiveness; 

from routine charge relaxation to high current arcing resulting in component burn-out or 

total vehicle failure [1]. 

 

 

 

Figure 1.  Nickel Nanostrands approximately 100 nm in diameter [4]. 

 

Previous to this work, composite nanofillers with nickel nanostrands were 

investigated in a similar fashion as this work. [1] [2] An image of a nickel nanostrand is 
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depicted in Figure 1.   The resistivity and electrostatic properties of the nickel nanostrand, 

both pre and post electron irradiation, are characterized in that research and used to 

validate and compare the results in this research effort. 

 

 

 

Figure 2.  Depiction of a Carbon Nanotube created by rolling a two dimensional graphene sheet into 

a tube (center) the graphene sheets have also been rolled into balls (left) or stacked on top of each 

other (right). [5] 

 

Carbon nanotubes (CNT) have been introduced into space grade composites as a 

method of increasing conductivity.    A depiction of a single walled nanotube (SWNT) 

CNT is shown in Figure 2.  The CNTs are electrically conductive and have the capability 

to discharge electrostatic potentials.  They also provide sufficient conductivity and even 

shield from the radio frequency interference, while keeping a high strength-to-weight 

ratio.  Since the discovery of the CNT and their high strength and conductive properties, 

a large amount of research in many fields has gone into the study of CNT’s.  Potential 
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applications of CNT’s include energy storage devices, field emission devices, transistors, 

sensors and probes [3].  Little research has been conducted on the ionizing and non-

ionizing radiation effects of CNT’s in composites.  The high cost of CNT composite 

fabrication may prevent the use as opposed to other materials.   

Carbon nanofibers (CNF) have been introduced into space grade composites as a 

method of increasing conductivity.  A TEM image of a CNF is shown in Figure 3.  

CNF’s are electrically conductive and have the capability to discharge large electrostatic 

potentials.  The CNF is similar to a CNT except the outer wall is not one atom thick like a 

CNT.  The CNF can be thought of as stacked layers of graphene in tube-like structures.   

This makes CNF’s larger in diameter than CNT’s, but they have similar mechanical and 

electrical properties.   
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Figure 3.  A transmission electron microscope (TEM) image of PR-25-XT-HHT carbon nanofiber 

shows the highly graphitic structure of the nanomaterial. [6] 

 

A generic CNT outside of a polymer is more conductive than a CNF.  The CNT 

conductivity is on the same order of magnitude as a conductive piece of metal such as 

nickel.  The CNF outside of a polymer is still considered a conductive material.  The low 

manufacturing cost of the CNFs compared to CNTs makes them desirable as a nanofiller.  

1.2 Objective 

The objective of this work is to determine the effects of ionizing and non-ionizing 

radiation on resistivity and electrostatic discharge of these composite materials.  The 

primary purpose is to determine the effects of a simulated space environment on 
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composite materials to include both the radiation and thermal environmental conditions. 

Furthermore, since previously reported volume resistivity changes following irradiation 

on the nickel nanostrand composites have been inconsistent, this thesis will also focus on 

improving the experimental procedures to obtain consistent results.   

The primary objectives of this work are: 

1. Establish a experimental capability to measure resistivity through fabricating 

platforms and developing procedures to produce consistent measurement 

results.  The results can be used to validate previous research and follow-on 

experiments. 

   

2. Measure and compare the resistivity of carbon nanotube and carbon nanofiber 

composites before and after electron and neutron irradiation.  

 

3. Measure the ESD properties of both carbon nanofiber and carbon nanotube 

composite materials before and after irradiations for comparison.  

 

4. Determine which nanofiller composite is less susceptible to space radiation 

damage. 

 

A secondary objective of this work is to measure and compare the resistivity of nickel 

nanostrand, carbon nanotube , and carbon nanofiber composites before and after thermal 

cycling. 

 The electrical properties of the CNT and CNF composites will make both 

composites suitable replacements for aluminum as satellite structures.  The CNT 

composite will be more conductive than the CNF composite when the composite material 

is volume loaded to the same percent.  Due to the single atomic layer of the CNT’s, they 

will be more susceptible to radiation damage.  The wall thickness associated with CNF’s 

will increase the radiation hardness of the CNF composite.   

 The reduction in the conductivity of the CNT composite will be greater due to 

radiation induced atomic displacements in the CNT nanoparticles.  This is contrary to the 
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proposed reason for nickel nanostrand  radiation damage effects from previous research, 

where the increase in resistivity was believed to be largely due to interactions with the 

epoxy resin.  This is due to the nanofiller in the CNT and CNF composites consisting of 

carbon, a natural semiconducting material, and it being more susceptible to radiation 

damage as opposed to nickel.  Neutron radiation should have a larger impact on the 

resistivity due to its non-ionizing radiation effects compared to electron radiation.  

1.3 Paper Organization 

This thesis will address theory, experimental design, results and analysis, and 

provide conclusions and recommendations.  The theory section will briefly describe the 

space environment and a description of the materials under investigation. The experiment 

section describes the design of the experiments, the measurements and procedures, and 

provides relevant explanations of specialized measurement techniques.  Pre-irradiation 

and pre-thermal cycling measurements will also be presented in the experiment section.  

The results and analysis section presents results of the post-irradiation and post-thermal 

cycling measurements and analysis of those results.  Finally, the conclusions and 

recommendations section offers analysis of the outcome from the experiment and 

recommendations for follow-on research. 
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II. Theory 

2.1 Characterizing the Problem 

2.1.1 The Space Environment 

 Space applications are of primary interest for the nanocomposites under 

investigation.  Specifically, the thermal and radiation environments present in near-earth 

space will be defined in order to replicate them in experiments. The thermal and radiation 

effects on the nanocomposites will be investigated with respect to the surface and bulk 

resistivity changes.  Satellites in geosynchronous orbit circle the earth approximately 

35,000 km above the equator in the outer Van Allen radiation belt [7]. The radiation belts 

are characterized by energetic charged particles, primarily protons and electrons, which 

are trapped in regions above the earth by its magnetic field.  An illustration of the Van 

Allen belts is provided in Figure 2. [8] 
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Figure 4.  Schematic of the Earth’s magnetosphere and associated plasma current densities [8] 

 

Most satellites operate within a high energy particle buffer provided by the 

magnetosphere from 300 to1000 km.  The magnetosphere effectively reduces the flux of 

high energy particles emanating from the solar wind by deflecting the particles away 

from the earth.  Many of these particles are deflected into the tail current that extends 

thousands of Earth radii away from the earth.  As these particles move through counter-

current flow back into proximity with the earth, most particles are attenuated through 

collisions into a plasma, at an average energy range of 2 to 200 keV [2]. Under normal 

solar conditions, some high energy electrons remain in the plasma, with average energies 

of 100 keV to 100 MeV [7].  This effect is magnified during periods of high solar 

activity.   
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 Of these high energy particles, electrons are of primary concern.  The high energy 

electrons can cause damage to the internal components of a space vehicle.  They 

generally do not contribute to surface charging effects as they penetrate the surface 

materials.  As such, the lower energy electrons are primarily responsible for surface 

charging and the associated ESD [9].  For the purpose of space operation validation and 

evaluation, the space radiation environment is defined by MIL-STD-1809.  MIL-STD-

1809 defines flux values for proton and electron radiation at several altitudes. 

 

Table 1.  Energy flux values for protons and electrons defined by MIL-STD-1809 [10]. 

 

 

  The thermal space environment results in extreme temperature shifts in the 

satellite structural materials.  An orbiting spacecraft repeatedly passes through day and 

night, referred to as a thermal cycle.  A satellite in low-earth orbit (LEO) can be subjected 

to temperature differences from -80 to +80 
o
C [11].  Over the lifetime of a satellite, this 

equates to thousands of thermal cycles.  Therefore, materials need to be able to maintain 

their electrical and mechanical properties under these extreme temperature shifts.   

Source Energy Range [MeV] Flux [particles/cm2-sec]

Protons >  0.1 1 x 107

> 1.0 1 x 103

Electrons > 0.1 2 x 107

 > 0.5 8 x 106

> 1.0 2 x 106

> 2.0 2 x 104
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2.1.2 Nanocomposites  

 The three general types of nanocomposites under investigation are Nickel 

Nanostrands, Carbon Nanotube (CNT), and Carbon NanoFiber (CNF).  In general, all 

three types use the same principle of incorporating a nanofiller in order to increase the 

conductivity of the composite.  Figure 5 shows how a conductive nanoparticle such as 

CNT, CNF or nickel nanostrands can be incorporated into an insulating polymer to create 

a conductive material. The nanoparticles provide a conductive pathway through the 

polymer based composite.  The conductivity is based upon the overall weight loading 

percent of the nanoparticle.  Figure 6 shows how the resistivity decreases as a function of 

the volume percent of conductive nanoparticle, in this case nickel nanostrands, contained 

in the composite.   

 

 

Figure 5.  Concept of incorporating nanoparticles inside a polymer to create a conductive material.  

The nanofiller acts as a conductive pathway to increase the conductivity of the insulating polymer. 

[12] 

 

Nickel nanostrand composite description and fabrication are described in [1] and 

[2] in great detail.  As described by [1], the nickel nanostrand composites were fabricated 

with eight separate configurations.  Only the control and external configurations were 

used in this thesis during the thermal cycle experiment.   It is recommended to refer to [1] 

and [2] for more details concerning the nickel nanostrand composites.  
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Figure 6.  The decrease in resistivity as a function of volume percent of Nickel Nanostrands in a 

composite material [4] 

 

 The CNT composites were provided by Nanocomp, Inc.  The actual CNT’s are 

dispersed in 5250-4 epoxy resin on top of 6781 S-glass laminate substrate.  The entire 

sample is 1 mm thick with the CNT and resin layer being a nominal 150 µm thick.    The 

CNT’s contained in the epoxy resin are estimated to be 25 nm in diameter and up to a 

millimeter in length [13].  The CNT samples consist of both multiwall and single wall 

nanotubes.  The ratio of SWNT and MWNT contained in the composite is unknown. The 

CNT layer contains 20 2/grams m (gsm) of CNT’s [13].  Figure 7 shows an SEM image 

of the CNT and CNF samples.  As shown in Figure 7, the surface and the interface 

between the conductive layer and S-glass is not completely smooth like a metallic 

surface.   When using ASTM B193 for conductive materials, a smooth surface is assumed 

due to the nature of metallic surfaces.  The variations at the interface of the conductive 

layer and substrate introduce error into the resistivity measurement.  This would lead to 

variations in both a bulk and lateral resistivity due to the variation in thickness at the 

interface.      
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Figure 7.  SEM image of both the CNT (top) and CNF (bottom) samples.  The CNT and CNF 

conductive layers are on top of the S-glass substrate.  The CNT and CNF layers are both a nominal 

150 µm, while the S-glass is a nominal 900 µm. 

 

 The CNF composite was provided by Applied Sciences, Inc.  The actual CNF’s 

are dispersed in 5250-4 epoxy resin on top of 6781 S-glass laminate.  The entire sample 

is 1 mm thick with the CNF and resin layer being a nominal 150 µm thick.  The CNF’s 

contained in the epoxy resin are estimated to be 100 nm in diameter and up to 100µm in 

length.  The CNF layer contains 20 gsm of CNF’s [13].   

 As shown in Figure 8, the CNF composites are manufactured with a distinctly 

different structure than the CNT’s.  The CNF has a “stacked-cup” morphology base that 

is precipitated from a nanoscale catalyst particle.  The stacked-cup structures consist of 

sheets of graphene arranged in a structure resembling concentric cylinders. The CNF’s 

S-glass CNT or CNF conductive layer

CNT Composite

CNF Composite
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are much different than the CNT samples in both growth technique and dimensions; 

however they exhibit similar properties as a multi-walled CNT.  The primary benefit of a 

CNF is the much lower cost with fewer processing issues during fabrication.  Figure 8 

displays the PR-25 type of CNF.  The CNF is available in a variety of types and grades 

which vary in wall thickness and crystalline structure [6].   

 

 

Figure 8.  The transmission electron microscope (TEM) image on the left represents a typical PR-19 

carbon nanofiber with a large fraction of turbostratic carbon deposited on the catalytic layer 

(stacked-cup carbon).  The catalytic carbon layer is carbon precipitated from the catalyst particle 

while the turbostratic layer is added through chemical vapor deposition techniques.  The image on 

the right is typical of PR-25 fiber that only has the catalytic carbon layer [6] 

 

2.1.3 Radiation Damage 

 In a composite material, the radiation damage occurs in both the conductive 

nanofiller material and in the epoxy resin.  The measured changes in resistivity of the 

nickel nanostrand composites following electron irradiation were determined to be due to 

chemical changes in the epoxy resin. [1]   However, x-ray absorption fine structure 

(XAFS) measurements found little evidence to support the epoxy resin chemical changes 

  

          

Hollow Core  
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Carbon 

Hollow Core 
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Carbon 
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[2].  [2] reported no increase in oxide formation following electron irradiation.  XAFS 

measurements are a spectroscopic technique that uses x-rays to probe the physical and 

chemical structure of a material at an atomic scale. The x-rays are chosen to be at and 

above the binding energy of an electron level of a particular atomic species.  This allows 

for the identification of specific atomic particles present in a material.  

When considering the CNT and CNF composites, the conductive materials are 

comprised of carbon.  Carbon is a semi-conductive material and extensive research has 

been conducted on similar semiconducting material such as silicon. This research can 

provide a basis for radiation effects for the CNT and CNF conductive nanoparticles.  

   This research is primarily focused on the damage caused by electrons and 

neutrons.  As shown in Figure 9, the two main effects are ionization and non-ionizing 

radiation effects.  The primary effect of ionizing radiation is the creation of electron-hole 

(e-h) pairs which elevates a valence electron into the conduction band.   If the incident 

radiation energy is high, the ionization could lead to free secondary electrons which 

would continue to create e-h pairs and move throughout the material [14].     
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Figure 9.  Radiation effects can be divided into two broad categories of ionizing and non-ionizing 

radiation.  However, as shown, the effects are interconnected [14]. 

 

 Also shown in Figure 9, the second effect of radiation is non-ionizing, which 

includes nuclear absorption and creating point defects.  Point defects are caused by 

incident radiation transferring its energy to the atom and dislocating it from its lattice site.  

This dislocation can lead to a reduction in carrier mobility, carrier lifetime and trap 

formation.  If the incident radiation is high enough in energy, it can undergo nuclear 

absorption which can lead to a variety of secondary radiation, including gammas, alphas, 

protons, and betas.  Generally, non-ionizing radiation can lead to the creation of point 

defects that may reduce the conductivity of the material.  [14] 

Due to the high flux of gammas in the OSURR, photon damage mechanisms must 

be taken into account.  The primary damage mechanism of photons is ionization through 

the photoelectric effect (PE), Compton scattering (CS) and pair production (PP).  While 

the secondary damage mechanism of photons are non-ionizing effects, due to the zero 
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rest mass of photons. PE, CS, and PP all result in the creation of charged particles.  Once 

the charged particles are created, the effects of the created particle will be analogous to 

the following description of electrons [14].   

 In this investigation, the CNT and CNF composites were exposed to the two types 

of radiation, neutrons and electrons.  Since the Ohio State University Research Reactor 

(OSURR) was the source of the neutron radiation, they were also exposed to a large 

gamma flux.  Therefore, the effects of gammas must be taken into consideration for our 

composite materials.  The basic mechanisms can be classified by radiation type.  First, 

the primary damage mechanism of neutrons is non-ionizing effects.  Therefore, incident 

neutrons cause atomic displacements within the lattice and reduce the conductivity of the 

composite material.  Due to the uncharged nature of a neutron, no coulomb force interacts 

on the neutron.  Therefore, neutrons have a low cross section for interaction and penetrate 

deep within the material.  The depth of penetration is dependent upon the incident 

neutron energy.  

 The primary and secondary mechanisms associated with electrons are energy 

dependent.  Therefore, both ionizations and non-ionizing effects are associated with 

electron radiation.  The non-ionizing effects will also lead to atomic displacements and a 

reduction in conductivity analogous to the neutron non-ionizing effects.  The ionizations 

will lead to excitation of valence electrons creating e-h pairs [14].     

 However, the lower atomic mass of electrons as compared to neutrons needs to be 

taken into account when attempting to predict the atomic displacements.  The electron 

has an atomic mass of 319.11  1  0 kg , while a neutron has an atomic mass of 

271.68  1  0 kg .  Therefore, the neutron is 31.8  1  0  more massive than the electron. The 
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negative charge associated with electrons creates a Coulomb force.  This Coulomb force 

affects the cross section for interaction within the material.  Therefore electrons penetrate 

deep within the material.  However, despite the larger mass of a neutron, due to the lack 

of a Coulomb force the neutrons will penetrate further into the material at a given energy 

[15].  

 Once radiation damage occurs, a neutralization process can follow.  

Neutralization is temperature and applied electric field dependent in most semiconducting 

materials [14].   In most semiconducting materials such as silicon displaced atoms are 

referred to as Frenkel pairs.  The vacancy at the atom’s previous location and the 

interstitial where the atom re-attached to the lattice are termed a Frenkel pair.  The 

Frenkel pairs are known to recombine at temperatures below RT.  In metallic materials, 

displaced atoms can recombine at all temperatures.  It has been observed that defects 

inside CNT’s need high temperatures to facilitate the recombination.  The high 

temperature increases the mobility of the interstitial atoms to recombine in the vacancies.  

The increased mobility allows for faster annealing through forming a non hexagonal 

structure [16].      

2.2 Previous Research 

 Nickel nanostrand composites were researched by [1] and [2].  The results of [1] 

and [2] are inconsistent. Table 2 and Table 3 show the surface resistivity results on 

electron irradiations of nickel nanostrand composites by [1] and [2].  Two main 

differences in the reported values are the magnitude of the pre-irradiation resistivity 
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values, and second the direction and magnitude of the change in resistivity with the post 

irradiation resistivity values.   

 

Table 2. Reported surface resistivity values by [1] for nickel nanostrand composites.  The reported 

changes due to electron radiation ranged from 45-440% depending on the configuration. 

 

 

Table 3.  Reported surface resistivity values by [2] for Nickel nanostrand composites pre and post 

electron irradiation.  [2] reported a change in resistivity in the opposite direction as [1]. 

 

 

 First, the magnitude of the pre-irradiation values reported by [1] and [2] can be 

accounted for in the size of samples each used to conduct a four point collinear resistivity 
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test.  Both [1] and [2] used the same sized samples, however, [2] applied a correction 

factor to the resistivity calculations due to edge effects and thickness to probe spacing 

effects.  The correction factors were applied based on [18].  [1] did not use the correction 

factor and if the same correction factors were applied to the reported values of [1], they 

would match more closely with the reported values of [2].   

There are three types of correction factors that can be applied to a four point 

probe measurement.  The first is for sample thickness, the second corrects for lateral 

sample dimensions, and the third corrects for sample edges effects[18].  All samples in 

this investigation were approximately 5 x 25 x 1 mm. The probe spacing was maintained 

at 6.35 mm, this allows for the thickness (t) to be less than the probe spacing (s), and the 

width (w)  to be larger than s.  The dimensions described above for the test fixture and 

composite samples allow for no correction factors to be applied to the four point 

measurements on the CNT and CNF composite samples.   

  [1] reported an increase in resistivity post electron irradiation while [2] reported a 

slight decrease in resistivity.  This could be accounted for by the type of samples tested.  

[1] tested 8 different configurations of the nickel nanostrand, while [2] only tested one 

configuration.  In addition, [1] samples consisted of two types of epoxy, RS-3 space 

grade epoxy and aero epoxy.  The resistivity is believed to be dominated by the type of 

epoxy and the percent loading of the nanofiller.  Therefore, different epoxy's will result in 

different resistivity’s due to the need to tunnel from nanostrand to nanostrand along the 

conductive path.  The radiation affects on the epoxy becomes just as important as the 

radiation effects on the conductive material.   
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 The previous research studies are the primary sources for comparison.  However, 

additional radiation effects research on non-polymerized CNTs and CNFs will be used 

for comparison.  [16] conducted research into the electron radiation effects on CNTs.  In 

the research, a TEM was used to irradiate individual CNT’s and also to look at images of 

the CNTs as they were irradiated.  It was discovered the electron beam would cause a 

deformation of the individual CNTs.  A high temperature anneal was also observed.   

 [19] researched the effects of electron beam radiation on CNF’s.  [19] used atomic 

force microscopy (AFM) to observe the morphology of the CNF’s.  The AFM images 

produced pre and post electron irradiation by [19], showed both a bending and fusing of 

adjacent CNFs.  It should be noted that the breaking of a CNF would more than likely 

decrease the conductivity if they were in a polymerized composite, while the fusing of 

adjacent CNFs would increase the conductivity of the CNF composite.  [19] described the 

fusing process as a welding process.  This would lead to electrical transfer from one tube 

to the next.   

2.3 Summary 

 The three types of composite materials under investigation are nickel nanostrand, 

CNT and CNF composite materials.  The nickel nanostrand radiation effects have already 

been explored and they will be compared to the CNT and CNF composites.  The 

resistivity will be the primary electrical property used to investigate the radiation effects.  

The resistivity of the material is an important electrical property in satellite structures. 

Maintaining a low resistivity will provide protection from the space radiation 
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environment.  If a resistive material is used to replace aluminum in satellite structures, 

they will be susceptible to electrostatic discharge.   

 The effects of neutron and electron radiation will be the primary focus.  

Therefore, this will lead to both ionizing and non-ionizing damage mechanisms within 

the composite materials.  The space radiation environment will be defined by MIL-STD-

1809.  Specifically the electron radiation environment will be simulated.  In addition to 

the space radiation environment, the composite materials will be exposed to higher dose 

levels of both electrons and neutrons to facilitate the analysis of radiation effects on the 

conductivity.   
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III. Experiment 

3.1 Experiment Overview 

 In this research, the changes in resistivity on three types of composites under a 

simulated space radiation and thermal environment were investigated.  The three sample 

types include nickel nanostrand, carbon nanotube, and carbon nanofiber.  Resistivity and 

ESD measurements were conducted on CNT and CNF composites irradiated with reactor 

neutrons, and 0.5 MeV electrons using a Dynamitron accelerator.  In addition, resistivity 

measurements were conducted on nickel nanostrand, CNT, and CNF composites that 

were thermally cycled.  Post-irradiation ESD measurements were performed, while post-

irradiation and post-thermal cycle resistivity measurements were performed.   

3.2 Sample Preparation  

 The samples were cut from a 610 x 610 x 1 mm sheet composite.  The samples 

were cut in order to fit the resistivity measurement fixture (5 x 25 x 1 mm).  Samples cut 

for a corresponding mechanical composite research project were cut from the same 

composite sheets.  Therefore, the samples used for this experiment were not cut adjacent 

to one another.  Rather, they were cut from different portions of the larger sheet.  This 

explains the lack of uniformity of the nanofiller spread throughout the epoxy resin in one 

of the sheets.  Non-uniformity of the nanofiller would result in a difference in resistivity 

values between samples due to a different epoxy-to-nanoparticle volume within each test 

sample.  

 The samples were cut using a diamond saw.  The number of samples cut of each 

type are given in Table 4.   As indicated in Table 4, separate samples were cut for the 
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neutron irradiations and thermal cycling experiments.  A micrometer was used to 

measure the thickness of the nickel nanostrand samples.  Due to the S-glass insulating 

substrate on the CNT and CNF composite, a scanning electron microscope was used to 

determine the thickness of the conductive layer for the CNT and CNF composite.   

Table 4. Number of samples cut from the composite sheets of each type and the associated 

experiment each sample was used for. 

Neutron 

Irradiation

Electron 

Irradiation

Thermal 

Cycle

Carbon nanotube 4 2 1

Carbon nanofiber 4 2 1

Nickel Nanostrand -

control
0 0 2

Nickel nanostrand-

external
0 0 2

 

 

3.3 Resistivity Measurements 

3.3.1 Test Setup 

 Resistivity measurements were performed using the four-point collinear probe 

resistivity configuration using [20].  ASTM standards B193-02 [21], D4496-04 [22] and 

D257-07 [23] were used for surface and volume resistivity.  For most materials, only one 

ASTM standard would be followed.  However, due to the conductive nanofillers 

incorporated into the insulated epoxy, elements from all three ASTM standards were 

followed.  This four-point probe technique was accomplished using a measurement 

fixture connected to a Keithley model 4200 Semiconductor Characterization System 

(SCS).  Figure 10 shows the test system for the surface and volume resistivity 
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measurement.  The test fixture is contained inside an aluminum box which acts as a 

faraday shield to reduce electromagnetic interference while taking measurements.  

 

 

Figure 10.  Surface resistivity test setup.  Test fixture is attached to the Keithley 4200 SCS.  A KITE 

program was used to vary the current source and measure the voltage difference between probes 2 

and 3. 

 

The test fixture was designed to maintain a constant probe distant between 

measurements.  The test fixture is made from high density polyurethane (HDPE) and has 

four gold probe contacts that connect to the sample under test.  Each gold probe is spaced 

a distance of 0.635 cm apart from adjacent probes. The four gold probes are connected to 

7078-TRX-10 low noise triax cables which are connected directly to the corresponding 

signal measuring unit (SMU) on the Keithley 4200 SCS.   

Measurements were taken by sourcing current through probe 1 and measuring the 

voltage drop between probes 2 and 3.  Probe 4 was connected to ground via the Keithley 

4200 force ground.  The current injected into probe 1 was varied between -10 to +10 mA 
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in 1 µA increments, alternating positive and negative currents with two measurements at 

each current too reduce the Johnson noise [20].  Measurements were taken at a three-

second sweep delay, followed by a three-second hold time to allow current relaxation 

across the surface between measurements.   

 

   

Figure 11.  Close up image of the test sample fixture with the gold contacts.  The gold contacts are 

fixed into the test fixture to maintain a constant probe distance between measurements.  The 

compression clamp is shown lying next to the fixture which was used to ensure probe contact into the 

conductive surface of the nanoparticle layer. 

 

Sample resistivity was found by using the measured sample resistance and 

multiplying it by the effective length.  The sample resistance was found using Ohm’s law 

as shown in equation (1).  

 [ ]
V

R
I

 (1) 
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In equation (1) ΔV is the measured voltage difference between probes 2 and 3, and I is 

the current sourced to probe 1.   In order to find the sample resistivity, the sample 

resistance is then multiplied by the effective length.  The effective length can be defined 

in one of two ways.  The first is to find volume resistivity. The effective length is defined 

as wt
s where w is the width, t is the thickness and s is the probe spacing. The effective 

length when multiplied by the resistance will determine volume resistivity.  Therefore, 

the volume resistivity can be found by equation (2) [20].    

 [ ]v

V wt
cm

I s
 (2) 

 In addition to the volume resistivity, the effective length is used to determine 

surface resistivity. The surface resistivity can be determined by multiplying the resistance 

by the effective length defined as w
s .  The surface resistivity has units of ohms but is 

commonly referred to in units of Ω/square. The surface resistivity can be found by 

equation (3) [21].  

 [ / ]s

V w
square

I s
 (3) 

The four point collinear resistivity measurement technique reduces the probe resistance, 

contact resistance and spreading resistance that are characteristic in a two probe 

resistance measurement [18].  The calculated resistivity’s are compliant with ASTM 

B193 [21]. 

 The inverse of the resistivity is conductivity.  Therefore, in order to find the 

conductivity of a material using the resistivity, equation(4) can be used [17].  
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1

 (4) 

Conductivity can be expressed in terms of volume conductivity, or surface conductivity 

analogous to volume and surface resistivity.  The units of volume conductivity are 

Siemens/cm, while the units of surface conductivity are Siemens/square [23].   

3.3.2 Measurement Procedures 

Each sample was prepared as discussed in section 3.2 and then cleaned and 

allowed to dry.  The sample was placed in the test fixture and held in place with the 

compression clamp.  Once the sample was in place, the top of the aluminum cage was 

secured and the Keithley 4200 SCS was used to obtain the current-voltage (IV) 

measurements between -10 to +10 mA using the Keithley Interactive Test Environment 

(KITE).  An example of a CNT composite IV measurement is shown in Figure 12. Also 

shown in Figure 12 is the linear regression line through the data with the slope which is 

equal to the resistance of the sample according to equation (1).  This resistance is in units 

of ohms.  In order to obtain the resistivity, the slope is multiplied by the effective length 

according to equation (2) or equation (3).    
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Figure 12.  IV measurement of the CNT sample plotted with the linear regression line.  The slope of 

the line is the resistance of the sample according to equation (1). 

 

During the early stages of measurements, it is believed the compression clamp 

was not secure enough and the gold probes were not making contact with the conductive 

layer.  This resulted in a non-linear response between the voltage difference and the 

varied current source. As shown in the SEM images of the samples, the nanofiller/epoxy 

layer is not smooth.  A few techniques were explored to resolve this problem, however 

the best solution was increasing the pressure with the compression clamp.  This 

compensated for the lack of smoothness in the sample, by ensuring the gold probes 

pushed through any epoxy layer and got close enough to the conductive pathway the 
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nanoparticles provided.  A screw driver was used to secure the compression clamp to 

ensure maximum probe contact with the conductive layer. This may introduce some error 

in the measurement because the compression clamp was not secured consistently for each 

measurement.  In addition, the screws were made of metal while the test fixture was 

made of HDPE which loosened over time, resulting in inconsistent compression clamp 

pressure.   

3.4  Electrostatic Discharge Test 

 A transverse (bulk) resistivity measurement was desired for the CNT and CNF 

composites.  However, due to the S-glass insulating substrate for the CNT and CNF 

composites, it was not possible.  Therefore, [1] introduced an electrostatic discharge test 

which was correlated to resistivity.  The ESD test was conducted on the CNT and CNF 

composites pre and post neutron irradiation to investigate the feasibility to measure the 

transverse resistivity of the CNT and CNF composites despite the insulating S-glass 

substrate.   

 The test system of [1] was replicated as much as possible, as shown in Figure 13. 

Figure 14 shows the equivalent test circuit designed by [1]. The ESD3000 was used as 

the discharge source exclusively.  The ESD3000 charged to the desired output voltage, 

the pointed contact discharge tip of the ESD3000 was placed on the sample prior to 

discharge.  The discharge ground contact lead of the ESD3000 was connected to the 

SDN-414-025 current viewing resistor which was then connected to the Tektronic 5104B 

oscilloscope that captured the current waveform for analysis.  The current waveform 

output captured by the oscilloscope was noisy and hard to analyze.   
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Figure 13. ESD test setup showing the ESD3000 discharge source,  sample under test, SDN-414-025 

current viewing resistor, tektronic Oscilloscope, cooper wire, copper plate and rubber brick. 

 

 Due to the noisy output inherent with the waveform, a smoothing routine was 

applied to the waveform for a more desirable current waveform. The signal was 

smoothed using a localized linear best fit routine. Figure 15 shows an example of a 

typical 12 kV smoothed current waveform output.  An example of the actual current 

waveform and the associated smoothing routine waveform is shown and described in 

Appendix B.   
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Figure 14.  Equivalent circuit for ESD test showing ESD3000 generator, Device under test, current 

viewing resistor connected to the oscilloscope [1]. 

 

 

Figure 15.  Typical smoothed current waveform output for a 12 kV voltage discharge. 
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 [1] designed the ESD measurement to simulate the discharge of surface charge 

buildup associated with resistive material in space.  Discharges were conducted over a 

wide range of voltages.  The discharge voltages initially were conducted at 2 kV, 4 kV, 8 

kV and 12 kV.  The output current waveform was recorded at each discharge voltage and 

compared to the expected current waveform specified in [24].  Figure 16 shows the 

expected output current waveform with associated parameters of interest [24].   

 

 

Figure 16.  Current waveform of typical ESD baseline pulse where tr is pulse rise time from 10 

percent to 90 percent of Ipeak, I1 and I2 are 30 and 60 ns current amplitudes respectively. [24] 

 

The 12 kV discharge voltage was most consistent and similar to the expected 

current waveform and used for investigation and analysis.  The waveform generally 

contains a fast rise to a peak current within the first 10 ns, with an associated fast current 
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decrease with an associated gradual rise to a much lower peak current with an oscillating 

current decrease. 

 Figure 16 shows the expected parameters of interest as Ipeak, I1 and I2.   I1 and I2 

are the current amplitude at 30 and 60 ns respectively.  Figure 15 shows the typical 

waveform for the CNT and CNF composite, and the best parameter of interest to analyze 

the waveform would be the Ipeak and the rise and fall time of the first peak.  Due to the 

insulating properties of the S-glass substrate, I1 and I2 parameters would not provide 

useful information.  The current amplitudes associated with I1 and I2 are useful in the 

analysis of completely semiconducting material. Once the initial ESD shock is complete, 

the insulating S-glass material cuts the extended flow of any current through the sample.  

The high breakdown voltage of the S-glass does not allow current to flow long enough to 

use the I1 and I2 parameters for analysis.         

3.5 Irradiations 

3.5.1 Overview 

 Both neutron and electron irradiations were conducted on the CNT and CNF 

composites.  The initial fluence for the electron irradiation simulated a 35 year lifecycle 

of a satellite in geosynchronous orbit, as defined by MIL-STD-1809.  The initial neutron 

irradiation simulated the electron NIEL effects of a 35 year space radiation environment 

in geosynchronous orbit.  After each electron and neutron irradiation, a second irradiation 

was conducted at a much higher fluence level. The second electron irradiation increased 

the electron fluence from 
161 10x  to 

16 26 10 /x e cm  . The second neutron irradiation 
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increased the neutron fluence level from 
141.11 10x up to

16 24 10 /x neutrons cm  with 4 

fluence levels in between.    

3.5.2 Electron Irradiation 

 Electron irradiations were conducted using 0.5 MeV electrons in a 1.5 MeV 

Dynamitron Electron Accelerator.  For all irradiations, 0.5 MeV electrons were used.  For 

the first irradiation, the CNT and CNF samples were irradiated to a fluence of

16 21 10 /x e cm .  This fluence and energy was used to match the electron irradiations used 

by [1] and [2].  This fluence level follows the space flux defined by MIL-STD-1809 as 

6 28 10 /x e cm s as shown in Table 1.  However, the beam current varied between 3 to 5 

µA for the first irradiation, and total Coulomb count was 1396 counts according to 

equation (5).   

 The electron energy of 0.5 MeV was used for comparison of the nickel nanostrand 

samples irradiated by [1] and [2].  Through CASINO simulations for the CNT and CNF 

samples, the 0.5 MeV electrons will penetrate through the CNT and CNF conductive 

layer and deposit the majority of their energy in the S-glass substrate.  Thus, the damage 

mechanism caused by the 0.5 MeV electrons will be dominated by atomic displacements.  

Figure 17 shows the Casino simulation.  The contour lines represent electrons losing 

energy.  Therefore, a majority of the electron energy is lost within the S-glass substrate.     
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Figure 17.  CASINO simulation for electron deposition incident on the CNT and CNF composites. 

 

 The operating parameters used for the Dynamitron are electron energy, beam 

current, and total Coulomb count.  As discussed above, the electron energy used was 0.5 

MeV.  The Coulomb count was determined according to equation(5) to ensure the correct 

electron fluence was achieved.   

 
           

   

Desired Fluence Charge per Electron Beam Area
CoulombCount

Full Scale Factor
 (5) 

The charge per electron is 
191.602 10x C, the beam area was 5.228 cm

2
 and the full scale 

factor was 6 µA.  Through the use of equation (5) and using the recorded parameters, a 

fluence of 
16 21 10 /x e cm was found as the fluence delivered to both the CNT and CNF 

composite samples.  The first irradiation lasted 35 minutes.  Therefore, an average flux of 
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12 24.8 10 /x e cm s
 
was delivered to the composite samples during irradiation.  There 

were minor fluctuations in the electron beam from the Dynamitron, however, the beam 

maintained a fairly constant flux.   

 The beam area had a circular collimator and covered 522.8 mm
2
, this corresponds 

to a circular beam diameter of 25.8 mm wide. With the samples being 5 mm wide and 25 

mm long, both CNT and CNF composites could be placed side by side on the cold head 

and irradiated simultaneously.  Figure 18 shows the mounting method used for the CNT 

and CNF composite samples.  Vacuum grease was used to attach the samples to the 

copper cold head.  In addition, two pieces of scotch tape were placed at each end of the 

sample to ensure the samples were secure.     
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Figure 18.  Picture of the CNT and CNF composite samples on the copper cold head.  The electron 

beam area covered the entire area of the samples.  The cold head was water cooled to keep the 

samples at room temperature. 

 

 The cold head was then attached to the end of the beam line and electrically 

isolated.  The cold head was water cooled to ensure the samples were maintained at room 

temperature and in order to prevent any thermal damage from the electron beam.  The 

beam line was placed under vacuum to a level of 10
-7

 torr.  Figure 19 shows the cold head 

attached to the end of the beam line with water flowing through the cold head to maintain 

a constant room temperature.  To ensure a uniform irradiation across the entire beam area 

the beam was continuously altered across the samples. The Dynamitron uses steering and 

scanning techniques to accomplish the uniform beam.  For this irradiation, the steering 

was accomplished in both the x and y cardinal directions.  However, only the x direction 
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had an operative scanning device installed.  Therefore, through beam characterization 

analysis, the beam appeared to have a uniform beam diameter. However, due to the 

inoperative y scanner, some non-uniformities may have been present.   

 

 

Figure 19.  Picture of the Dynamitron with the cold head attached to the end of the beam line.  The 

cold head is electrically isolated and pumped to a vacuum level of 10
-7

 torr.   Water flows through the 

cold head to maintain the samples at a constant room temperature. 

 

 After the first electron irradiation, the samples were removed from the cold head, 

cleaned and post irradiation resistivity measurements were taken.  The same samples 

were then irradiated by the same method discussed above to a fluence of
16 26 10 /x e cm .  

In order to achieve this higher dose, the Dynamitron was run different.   A full scale 

factor of 2 µA, while the beam current operated between 0.1 to 0.2 mA was used to 

achieve the higher dose.  This resulted in a higher flux delivered to the samples during 



 

40 

the second irradiation. Through equation (4) the total coulomb count achieved was 

2093 C.   The second irradiation took 87 minutes to complete.  Therefore, the flux for the 

second irradiation was
12 29.5 10 /x e cm s .  Table 5 summarizes the operating parameters 

for each irradiation.    

 

Table 5. Summary of the fluence levels for each irradiation with the associated Dynamitron 

operating parameters.  

 

 

3.5.3 Neutron Irradiation 

 Neutron irradiations were conducted at the Ohio State University Research 

Reactor (OSURR).   The OSURR is a pool-type reactor that operates continuously at full 

power up to a maximum of 500 kilowatts.  The average thermal neutron flux in the core 

is approximately
12 25 10 /x neutrons cm s .  The facility has several beam ports that can be 

used to insert samples for irradiation.  The central irradiation facility (CIF) and a 

pneumatic transfer tube referred to as the “rabbit tube” were utilized to irradiate the CNT 

and CNF samples. Figure 20 shows a picture of the core of the OSURR with the 

associated beam ports.  

 

Fluence        

[e-/cm2]

Flux         

[e-/cm2-s]

Coulomb Count 

[C]

Beam Area 

[cm2]

F.S. Factor 

[μA ]

Beam Current 

[μA]

Vacuum 

[torr]

Irradiation # 1 1 x 10 16 4.8 x 10 12 1396 5.228 6 3-5  10-7

Irradiation # 2 6 x 10 16 9.5 x 10 12
2093 5.228 2 100-200  10-7
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Figure 20.  Depiction of the OSURR core with the associated beam port.  The two beam ports used in 

the neutron irradiations are the pneumatic transfer tube “rabbit tube” and the central irradiation 

facility (CIF). [27] 

 

 The rabbit tube was used for the initial neutron irradiation.  The rabbit tube 

provided a 1 MeV equivalent fluence of
14 21.11 10 /x neutrons cm .  The samples were first 

wrapped in a cotton cloth and then again wrapped in cadmium in order to shield from 

thermal neutrons.  Figure 21 depicts the cross section for cadmium as a function of 

neutron energy.  At energies below approximately 0.2 eV, the cross section is 5 orders of 

magnitude greater for neutron absorption in cadmium compared to carbon. Therefore in 

the 1 MeV equivalent calculation we assumed that neutrons below 0.2 eV are absorbed 

by the cadmium.   

Rabbit Tube

CIF
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Figure 21.  Cross section for Cadmium as a function of incident energy. [28] 

 

 The fluence level was determined by equating the NIEL effects of neutrons to 

electrons.  A detailed explanation and calculations for equating the electron and neutron 

NIEL effects is found in Appendix A.  As discussed in the electron irradiation section, 

the 35 year lifecycle for a satellite in space equates to a fluence of 
16 21 10 /x e cm .   This 

value utilizes the electron flux value defined by MIL-STD 1809 as depicted in Table 1.  

The first step to find the neutron NIEL equivalent is to find the NIEL rate for electrons 

and neutrons.  This was accomplished by figure 3.24 in [29].  An important note:   the 

conversion factors were created for silicon.  Obviously, applying this chart to our CNT 

and CNF composites introduces error in our calculation.    
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 Using the conversion factor found in [29] led to the electron NIEL rate of 

2 21.11  1  0   /x keVcm g  and a neutron NIEL rate of 21.10  /keVcm g .  The second step is to 

use the NIEL rates above to find the expected amount of electron NIEL.  This is 

accomplished by multiplying the NIEL rate by the electron fluence.  This resulted in a 

NIEL of  141.23  1  0   /x keV g  .  Thus, dividing the desired neutron and electron NIEL by 

the neutron NIEL rate will result in the desired neutron fluence. The fluence level of 

neutrons was determined to be
14 21.11 10 /x neutrons cm .  This value is the 1 MeV 

equivalent for neutrons due to the NIEL rates obtained in [29].  

 The third step in determining the time of irradiation in the rabbit tube was to 

convert the 1 MeV equivalent of neutrons into the spectrum of neutrons the OSURR 

produces.  This conversion was accomplished using ASTM E722 [30].  Lastly, a neutron 

flux differential energy group was provided by the OSURR facility.  Using ASTM E722 

and the desired neutron fluence, it was calculated that the CNT and CNF samples would 

be irradiated for 9 minutes and 52 seconds in the rabbit tube.   

 Following the initial neutron irradiation, post irradiation resistivity and ESD 

measurements were taken.  Following those measurements, a second neutron irradiation 

was conducted to fluencies of 15 21.25  1  0   /x neutrons cm , 15 23  1  0   /x neutrons cm , 

15 24.25  1  0   /x neutrons cm , and 16 24  1  0   /x neutrons cm .  One CNT and one CNF composite 

was irradiated to each of the above fluence levels.  The first three samples were irradiated 

using the rabbit tube, while the last and highest fluence level was irradiated in the CIF.  

The CIF was needed in order to accomplish the high dose level.  Table 6 summarizes the 
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second irradiations.  Following the irradiations, resistivity measurements were taken on 

all samples.   

Table 6.  1 MeV equivalent fluence levels of the second neutron irradiation and the time and 

locations of irradiations in order to achieve the associated fluence level.  One CNT and one CNF 

composite sample was irradiated at each level. 

 

3.6 Thermal Cycling Measurements  

 In addition to the space radiation, the space thermal environment was simulated 

and the effects on resistivity were explored.  The space thermal environment was 

simulated using a thermal cycle machine located at AFIT.  The thermal cycle apparatus is 

shown in Figure 22.  This cycled the samples from approximately -60 
°
C to +60 

°
C. The 

samples were held at each temperature for approximately 10 minutes before cycling to 

the opposite temperature. The number of cycles represented approximately a 10 year 

lifecycle of a satellite in space.  This resulted in 4,963 cycles between -60 
°
C and +60 

°
C.    

1 MeV equivalent 

Fluence [neutrons/cm2] Location Time [minutes]

1.25 x 1015 Rabbit Tube 110

3 x 1015 Rabbit Tube 276

4.25 x 1015 Rabbit Tube 376

4 x 1016
CIF 266



 

45 

 

Figure 22.  Picture of the thermal cycle apparatus used to simulate the space thermal environment. 

 

 The CNT, CNF, control and external configurations of the nickel nanostrand 

samples were all subjected to thermal cycling.  Following thermal cycling, resistivity 

measurements were taken and compared to non-thermal cycled samples.     

 The nickel nanostrand samples used were of variable thickness.  Due to the 

fabrication process, samples from different sheets had different thicknesses.  When 

finding the volume resistivity, the different thicknesses between sheets resulted in 

inconsistent volume and surface resistivity measurement between sheets.  Thus, trying to 

compare a non-thermal cycled sheet with a thermal cycled sheet was difficult due to the 

difference in thickness when using equation (2).  A more accurate procedure to measure 
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thermal cycle effects would be to measure the resistivity on the same sample pre and post 

thermal cycle.   

 A possible solution would be to use equation (3) and find the surface resistivity.  

This measurement would remove the thickness from the calculations.  However, this was 

attempted and similar results were found using surface resistivity and volume resistivity.  

It is believed the increase in thickness during the fabrication process changes both the 

surface and volume resistivity of the sample.  The fabrication process needs to provide 

consistent material of equal thickness to compare the sheet resistivity.    
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IV. Results and Analysis  

4.1 Overview 

 The CNT and CNF composites responded differently both pre and post 

irradiation.  The CNT composites are more conductive than the CNF composites both pre 

and post irradiation.  However, both electrons and neutrons, had a greater impact on the 

conductivity of the CNT composite. In addition, the changes in resistivity displayed by 

the CNT composite post electron irradiation, showed a room temperature annealing effect 

with time.  The electron and neutron radiation had little impact on the CNF composite’s 

conductivity.   

4.2 Pre Irradiation Resistivity Results and Analysis 

  The CNT and CNF composites resistivity were measured prior to irradiation.  

Four samples of each type were used to determine the average volume resistivity for a 

sheet using equation (2).  The samples were taken from the same sheet but were not cut 

adjacent to each other.  The four sample measurements were averaged for the overall 

volume resistivity for the sample sheet.  Table 7 shows the results of the four point 

resistivity measurements prior to any irradiations.   

 

Table 7.  Volume resistivity/conductivity measurements using equation (2) and equation (4) taken 

prior to any irradiations.  The composites in rows 2 and 3 were used for neutron irradiations.  The 

composites in rows 5 and 6 were used for electron irradiations. 

 

Resistivity [Ω-cm] Conductivity [S/cm]

CNF Composite  0.16 5.8

CNT Composite 0.0094 106.8

CNF Composite  0.3496 2.9

CNT Composite 0.0091 109.9
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The uncertainty in the CNF composite measurement was +/- 0.01 Ω-cm. The 

uncertainty in the CNT composite measurements was +/- 0.0003 Ω-cm (or 0.3 mΩ-cm .  

The CNT and CNF composites, had identical dimensions between the width, probe 

spacing, and thickness. Therefore, a comparison between the resistance would equal a 

comparison of the resistivity.  Figure 23 shows the difference in resistance between the 

CNT and CNF composites.  The difference in slope represents the difference in resistivity 

in Figure 23.    

 

 

Figure 23.  Four point probe measurement on the CNT and CNF composites.  The difference in 

slopes represents the difference in resistance between the two composites. 

 

When comparing both of the carbon samples to the nickel nanostrand samples, the 

CNT composites were slightly more conductive than the nickel nanostrand composites.  
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[1] reported a resistivity value of 0.020 Ω-cm for the nickel nanostrand samples.  The 

CNF composite are more resistive then both the CNT and nickel nanostrand composites, 

however, the conductivity value according to ASTM B193 would still identify it as a 

conductive material.  A value of 1 Ω-cm would be necessary for it to be considered a 

moderately conductive material according to ASTM D4496.   

 The large uncertainty associated with the measurement is a limitation to the 

measurement technique used with the composite material.  Consecutive measurements 

using the four point probe test fixture without readjusting the sample resulted in small 

changes in resistance.  However, when the sample was removed and then placed into the 

test fixture between measurements, a different resistance was found.  This is indicative of 

the current taking a different path through the conductive layers nanoparticles when the 

probes were placed in a slightly different position.  Therefore, we can conclude the 

nanofiller in both composite materials are not uniformly distributed throughout the 

epoxy.   

 Upon considering the three materials for protection against electrostatic discharge, 

all three materials provide enough conductive flow for charge to relax and not discharge 

across the internal components of a satellite.  All composites are classified as a 

conductive material according to ASTM B193 and ASTM D4496.  Prior to exposure to a 

radiation environment, the CNT composite material is the best material for a satellite 

structure with respect to its conductive properties.   
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4.3 Post Electron Irradiation Resistivity Analysis 

 Two electron irradiations were conducted on the CNT and CNF composite.  The 

first electron irradiation, replicated the fluence level of both [1] and [2] consisting of

16 21 1  0 /e cm .  Table 8 shows the results of the post electron irradiation measurements 

and compares them to the pre-irradiation volume resistivity measurements. 

   

Table 8.   Volume resistivity/conductivity results post electron irradiation compared to pre 

irradiation resistivity/conductivity values.  The fluence was 16 2
1 1  0 /e cm .  The percent change is 

shown in the last column. 

 

 

The CNF samples had no change post electron irradiation.  The change was 1% 

for the CNF samples.  The post irradiation measurements had an uncertainty 0.001 Ω-cm.  

Therefore, a 1% change is within the uncertainty of the measurement.  The CNT 

composite’s resistivity did show a change post electron irradiation.  The change was 

25%.  The uncertainty for post irradiation measurement was 0.4 mΩ-cm.   

The CNT composite became more resistive while the CNF composite became 

slightly less resistive.  These changes indicate the CNF composite resistivity will not be 

affected by the electron space radiation over the lifetime of a satellite.  The CNT 

composite will be affected by the electron space radiation environment.  However, due to 

Resistivity [Ω-cm] Conductivity [S/cm] % Change

CNF  Composite 

Pre Irradiation
0.3496 2.86

CNF Composite 

Post Irradiation
0.3441 2.91 1.6

CNT  Composite 

Pre Irradiation
0.0091 109.9

CNT Composite 

Post Irradiation
0.0122 81.8 -25.5
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the different conductivity of each material prior to the irradiation, the CNT composite 

remains superior to the CNF composite. 

The same epoxy resin was used in the CNF and CNT composites.  Therefore, 

since no resistivity change was observed in the CNF composite and a change was 

observed in the CNT composite, we can conclude the change is occurring in the 

nanofiller particles and not in the epoxy.  [1] postulated that the change in resistivity was 

the creation of free radicals within the epoxy resins.  However, with no change in the 

CNF composite observed following electron irradiation, the change is most likely to 

occur within the nanoparticle.   

The atomic displacements of the carbon atoms within the CNT’s reduce the 

conductivity of each CNT [31].  The CNT composites consisted of SWNT and MWNT, 

the SWNT are more susceptible to radiation damage.  This is because the SWNT only 

consists of a single atomic layer. When considering an atomic displacement on a SWNT, 

the displaced atom will bind together with an adjacent molecule of the epoxy resin, thus 

having a greater effect on the resistivity of the SWNT.   

As has also been found with focused electron irradiation, the displacement 

damage causes deformation of the dimensions of the CNT’s [31].  The deformation of the 

CNT’s will cause a change in the electrical properties.  This is because the conductivity 

of the CNT’s are determined by the CNT diameter and chirality [32]. The deformation 

caused by the electron radiation would change the diameter of the CNT’s.  

However, when considering an atomic displacement of a MWNT, the displaced 

atom can bind together with an adjacent molecule of the epoxy resin or with an adjacent 

carbon atom from another layer of the MWNT.  If it binds with another layer of the 
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MWNT it will have little effect on the resistivity of the MWNT.  Electron spin 

Resonance (ESR) studies have found MWNT to be much more resistant to radiation 

damage due to the multi-wall nature of the CNT’s compared to the SWNT [33].   

The small change in the CNF composite can be explained similarly.  The TEM 

images from section II show the stacked cup formation of the sheets of graphene.  

Therefore, displaced atoms have a high probability to bind with another carbon atom 

from an adjacent layer of graphene much like a MWNT. 

The second electron irradiation provided a fluence of 16 26 10 /e cm .  As shown 

in Table 9, the CNF composite had little to no change from the pre irradiation resistivity 

measurements.  The uncertainty in the post irradiation CNF measurement was +/- 0.4 

mΩ-cm. This indicates the CNF composite conductivity will not be affected by an 

electron radiation environment much higher than what is experienced in space.   

 

Table 9.  Results of the second electron irradiation volume resistivity measurements with reported 

changes from pre irradiation measurements.  The fluence was 16 26 10 /e cm . 

 

Resistivity [Ω-cm] Conductivity [S/cm] % Change

CNF  Composite Pre 

Irradiation
0.3496 2.86

CNF Composite Post 

Irradiation
0.3524 2.84 -0.8

CNT  Composite Pre 

Irradiation
0.0091 109.9

CNT Composite Post 

Irradiation (3 days)
0.0112 89.5 -18.5

CNT Composite Post 

Irradiation (12 days)
0.0099 101.0 -8.1



 

53 

 The results of the second post electron irradiation for the CNT composite are also 

shown in Table 9.   Two resistivity measurements of the CNT composite post irradiation.  

The first measurement was taken 3 days after the irradiation, the second measurement 

was taken 12 days after the irradiation.  The measurements resulted in different values.  

The CNT composite was expected to be more resistive after the second and higher 

fluence irradiation than after the first and lower fluence irradiation.  As shown in Table 9, 

the CNT composite became less resistive after exposure to the higher electron fluence 

after 3 days of room temperature anneal compared to only 2 hours after the first 

irradiation.   

 Due to the lower change in resistivity, another measurement was taken 12 days 

after the irradiation to explore the idea of an annealing process associated with the 

electron radiation.  As shown in Table 9, the CNT composite became less resistive after 

12 days.  Therefore, the change in resistivity of the CNT composite post electron 

radiation anneals over time reducing the resistivity of the material.   

 The CNT composite annealed over the 12 days, however it did not recover back 

to the pre irradiation resistivity.  An 8.1% change from the pre irradiation resistivity 

remained after the 12 days and remained constant for measurements conducted after 12 

days.  The resistivity measurement taken after the first and lower electron irradiation was 

taken 2 hours after the irradiation was completed.   

 Both ionizations and atomic displacements are initially reducing the resistivity.  

As discussed previous, the atomic displacement results in a carbon atom being displaced 

from its lattice position, which results in deformation of the CNT structure.  A CNT has a 

hexagonal lattice structure.  When atomic displacements occur, the hexagonal lattice 
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structure is broken with primary knock on atoms and interstitial atoms.  The first 

mechanism to the room temperature (RT) anneal process is through dangling bond 

saturation and by forming non-hexagonal rings [31].  The second mechanism is through 

the migration of a carbon interstitial atom [31].  Figure 24 depicts the two anneal 

mechanisms.    

 

 

Figure 24.  The two mechanisms that cause the CNT to anneal.  (a) atomic displacements caused by 

electron radiation before anneal.  D depicts two atomic displacements, S depicts one atomic 

displacement, A is an interstitial carbon atom. (b) The anneal process, D forms non-hexagonal rings,  

S anneals by the migration of the carbon interstitial atom [31]. 

 

 The measurement taken after the first electron irradiation in Table 8 shows an 

increase in resistivity due to ionizations and atomic displacements.  The measurement 

taken 3 days after electron irradiation in Table 9 shows an increase in resistivity due to 

ionizations and atomic displacements with some annealing.  While the measurement 

taken 12 days after electron irradiation in Table 9 shows an increase in resistivity due to 

the two anneal mechanism discussed above.  The annealing process also accounts for the 
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higher resistivity measurement taken after the first and lower fluence electron irradiation 

due to the measurement taken only 2 hours after irradiation.     

4.4 Post Neutron Resistivity Analysis 

 Two neutron irradiations were conducted on the CNT and CNF composites.  The 

first neutron irradiation, shown in Appendix A, was equivalent to the electron NIEL 

effects for a 35 year lifecycle of a satellite in geosynchronous orbit.  Table 10 shows the 

results of the post neutron irradiation resistivity measurements.   

 

Table 10.  Volume resistivity/conductivity for pre and post neutron irradiation.  The neutron fluence 

was 14 21.11 10 /neutrons cm .  The change in resistivity is shown in the last column. 

 

 

 The CNF composites change in resistivity by an average of 1% with an 

uncertainty in the post irradiation measurement of +/- 0.005 Ω-cm.  The CNT composites 

increased resistivity by 3.7% with an uncertainty in the post irradiation measurement of 

+/- 0.2 mΩ-cm.  The expected change in resistivity for this neutron irradiation was the 

same as the change in resistivity for the first electron irradiation.     

 Looking at the CNF samples, the change in resistivity post-electron irradiation 

was 1.6% while post-neutron irradiation the change was 1%.  Looking solely at the CNF 

Resistivity [Ω-cm] Conductivity [S/cm] % Change

CNF  Composite 

Pre Irradiation
0.1592 6.28

CNF Composite 

Post Irradiation
0.1576 6.35 1.0

CNT  Composite 

Pre Irradiation
0.0094 106.4

CNT Composite 

Post Irradiation
0.0098 102.5 -3.7
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composite, the neutron fluence level of 14 21.11 10 /neutrons cm accurately replicated the 

electron NIEL effects for a 35 year satellite lifecycle.  However, the similarity in the 

change in resistivity may be due to the radiation hardness of the CNF composite and it 

would take a much higher dose to see a change in resistivity.   The CNF “stacked cup” 

design is more resistant to atomic displacement damage that occurs when exposed to 

electron and neutron radiation.  However, the drawback is the higher starting resistivity 

compared to both CNT and nickel nanostrand composites.   

 The CNT composite showed an increase in resistivity of 3.7% with an uncertainty 

in the post irradiation measurement of +/- 0.018 Ω-cm.  This change does not replicate 

the changes that were observed for the first electron irradiation.   An overall change of 

25.5% in resistivity for the first electron irradiation was measured.  However, as 

discussed before, the 25.5% increase was due to ionization and atomic displacement 

damage measured only 2 hours after irradiation.  The measurement taken post neutron 

irradiation that resulted in a 3.7% change was taken 4 days after irradiation due to 

activation of the impurities in the composite.  Therefore, any atomic displacement 

damage that occurred had sufficient time to anneal.   

 The second neutron irradiation involved irradiating the 4 CNF and 4 CNT 

samples to increasing fluence levels.  Figure 25 shows the results for the 5 additional 

neutron fluence levels.  One CNT and one CNF sample was irradiated at each neutron 

fluence level.  In order to compensate for the variation in pre irradiation conductivity, the 

percent change from the individual sample was applied to the average pre neutron 

irradiation conductivity.  As shown in Figure 25 and Table 11, the CNT composite 

conductivity continually decreases with increasing neutron fluence.  The CNF composite 
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conductivity has little change up to a neutron fluence of 16 24 10 /neutrons cm  1 MeV 

equivalent.  This neutron fluence equates to an electron fluence of 18 24 10 /e cm .   

 

 

Figure 25.  The reduction in volume conductivity as a function of neutron fluence in the CNT and 

CNF composite materials. 

 

Table 11. Changes in volume resistivity/conductivity due to a corresponding neutron fluence for the 

CNT composite only.  CNF composite resistivity remained constant.     
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 Due to the timing of the post electron irradiation measurements, no comparison 

could be made between the 35 year satellite lifecycle electron fluence and neutron 

fluence.  However, we can equate the second electron fluence of  16 26 10 /e cm  to a 

neutron fluence of 14 26 10 /neutrons cm  using the same method described in section III 

and shown in Appendix A.  Furthermore, we can use Figure 25 to find the expected 

neutron induced conductivity change.  The interpolated conductivity change using Figure 

25 results in a neutron induced change of 4.54%.   We can now compare this to the 

electron induced conductivity change at the equivalent fluence of 8.1%.  This provides 

for a much better comparison for the damage due to atomic displacements with RT 

annealing after both types of radiation.  

4.5 Electrostatic Discharge Measurement Analysis 

 The ESD test designed by [1] introduced a measurement that attempted to find the 

ESD properties of a material as well as finding an alternative measure of the transverse or 

bulk resistivity.  Obviously the ESD measurement is not a direct measurement of the bulk 

resistivity; however certain parameters of the current waveform from the ESD test can 

provide information of the bulk resistivity.  The three specific parameters of interest will 

be Ipeak, rise time and fall time of the early peak.   

 The Ipeak amplitude is a measure of the overall resistivity of the material [1].  In 

addition, the rise and fall time of the first peak are also indicative of the resistivity of the 

material.  The four point probe measurements gave us the surface and volume resistivity 

of the CNT and CNF epoxy layers.  However, for the ESD test, the insulating S-glass 

makes up 90% of the material the ESD test is measuring.  This is obstacle to getting 
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usable ESD results.  Any changes in the output waveform are indicative of the S-glass 

and the conductive layer, whether the conductive layer is CNT’s or CNF’s.   Therefore, a 

comparison of the CNT versus the CNF composites waveforms are made in order to 

account for the S-glass present in both composites.    

 Figure 26 shows the current waveforms of the CNT and CNF composites prior to 

any irradiations.  We assume the resistivity of the S-glass in both composites is equal.   

Therefore, any difference in waveform would be due to the CNT or CNF layer.  From the 

four point resistivity measurement, we know the CNF lateral resistivity is greater than 

that of the CNT.  Therefore, we would expect the bulk resistivity to follow those results if 

the nanoparticles are spread uniformly in both the x and y cardinal direction.   A 

deviation from the lateral resistivity would indicate non uniformities in the nanoparticle 

spread throughout the resin in all directions.    
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Figure 26. ESD waveforms of the CNT and CNF composite materials pre irradiation. 

 

As shown in Figure 26, Ipeak is different for the CNT and CNF composite.  The 

CNT composite Ipeak was 2.634 A, while the CNF composite was 2.341 A.  This is 

indicative of a higher bulk resistivity in the CNF composite than the CNT composite.  

Additionally, the CNF composite is more susceptible to ESD.  However, the rise and fall 

time of the early peak appear to be approximately the same.  This is likely due to the 

insulating S-glass rather than the conductive layer.  Next, an ESD measurement of the 

CNT composite pre and post neutron irradiation was made to explore a change in bulk 

resistivity due to neutron damage.   The four point resistivity measurement indicated a 

decrease in lateral resistivity of the CNT composite.  Therefore, we would expect a lower 

0 1 10
8

2 10
8

3 10
8

4 10
8

0

1

2

3

CNT

CNF

Time [s]

C
u
rr

e
n
t 
[A

]



 

61 

Ipeak.  Figure 27, shows the ESD current waveform for the CNT composite pre and post 

neutron irradiation.   

 Ipeak for post neutron irradiation for the CNT composite was 2.142 A as shown in 

Figure 27.  The lower Ipeak is indicative of an increase in bulk resistivity and an increased 

susceptibility to ESD.  2.142 A is lower than the pre neutron irradiation value for the 

CNF sample.  This leads to the conclusion the bulk resistivity of the CNT composite is 

greater than the CNF composite prior to neutron irradiation.  This is contradictory to the 

four point lateral resistivity measurements.   

 

 

Figure 27.  Smoothed ESD current waveform for the CNT composite pre and post neutron 

irradiation. 
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 An ESD measurement of the CNF composite pre and post neutron irradiation was 

conducted to analyze the change in bulk resistivity.  Figure 28 shows the results of the 

ESD measurement on the CNF composite.  The four point lateral resistivity indicated no 

change in the resistivity of the CNF composite.  Therefore, we would expect similar ESD 

waveforms pre and post irradiation.    

 

 

Figure 28.  Smoothed ESD current waveform for the CNF composite pre and post neutron 

irradiation. 

 

 As shown in Figure 28, Ipeak for the post neutron irradiation ESD measurement is 

2.515 A which is higher than the pre irradiation Ipeak.  This increase in Ipeak indicates a 

decrease in the bulk resistivity and decrease in the susceptibility to ESD.   
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 Using the Ipeak results from each measurement, one could conclude that the change 

in bulk resistivity is due to neutron radiation.  There is a slight correlation between the 

four point lateral resistivity and the ESD measurement.  However, the four point 

resistivity measurement takes the S-glass substrate completely out of the measurement 

and allows a measurement on the specific conductive surface layer.  With the ESD 

measurement, the S-glass plays the primary role.  This is most evident because the CNF 

and CNT conductive layer shows an order of magnitude difference in resistivity alone 

using the four point surface measurement, where the Ipeak values in the ESD 

measurements were within 0.3 A.   From the CASINO simulations, the majority of the 

radiation energy is deposited within the S-glass.  The changes in S-glass were not an 

objective of this research.  

 Therefore, the four point resistivity measurement is a much better method for 

determining the changes in conductivity in the CNT and CNF composites due to 

radiation.  This is because the measurement is able to isolate the CNT and CNF layer and 

ignore the S-glass substrate.  If the S-glass substrate was removed from the composite, a 

better and more useful ESD measurement is possible.  The ESD measurement designed 

by [1] was initially used on the nickel nanostrand composites which do not include any 

insulating material.  The ESD measurement is suitable for conductive and semi-

conductive material.     

4.6 Post Thermal Cycle Resistivity Results 

 The results of the post thermal cycle resistivity measurements are shown in Table 

12.  Table 12 lists the surface and volume resistivity.  As noted in section III, samples 
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were cut from different sheets for the pre and post thermal cycle measurements.  The 

different sheets of the nickel nanostrand composites did not have a consistent thickness.  

The thickness of the composite resulting from inconsistent fabrication process affects the 

conductivity of the material.  The thickness affects both the surface and volume 

resistivity.  Therefore, the results in Table 12 for the nickel nanostrand composites are not 

a good representation of the changes due to thermal cycle.  

 

Table 12.  Volume and surface resistivity results of the composite materials pre and post thermal 

cycle. 

 

 

 However, SEM images of the CNF and CNT composites pre and post thermal 

cycle indicate no change in thickness was involved in the thermal cycle or in the 

fabrication process.  Therefore, the comparisons in Table 12 are more accurate for the 

CNT and CNF composites.  However, as discussed previously, different resistance 

 Volume 

Resistivity

 Surface  

Resistivity Conductivity

Sample ρ [Ω-cm] ρ [Ω/square] σ [S/cm]

Control Pre Thermal cycle 0.009 0.103 105.4

Control Post Thermal cycle 0.009 0.059 107.2

% change -1.7 -42.7

EXT Pre Thermal Cycle 0.0085 0.047 117.3

EXT  Post Thermal cycle 0.0092 0.049 109.0

% change 7.6 4.2

CNT Pre Thermal Cycle 0.0094 0.94 106.7

CNT  Post Thermal cycle 0.0110 1.10 90.7

% change 17.6 17.6

CNF Pre Thermal Cycle 0.16 15.6 6.4

CNF  Post Thermal cycle 0.35 34.8 2.9

% change 123.4 123.4
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measurements were found on a single sample when the 4 probes were placed in slightly 

different locations.  Even greater changes in resistance were discovered from sample to 

sample cut from different locations of a sheet or from different sheets altogether.  This is 

due to non-uniformities in the nanofiller spread throughout the epoxy.  Therefore, 

comparing one sample to another sample pre and post thermal cycling introduces error.   

The CNT samples showed a decrease in resistivity by 17% and the CNF samples 

increased by 123%.  Due to the discussion above, I believe the specific percent should be 

ignored, and only a comparison to one another should be made.  Therefore, we conclude 

the thermal cycle had a larger impact on the CNF composite than the CNT composite.   

The change in resistivity on the CNT and CNF composites can be explained by 

the thermal expansion and compression experienced by the nanofillers and the epoxy 

resin.  During the cold cycle, the atomic structure of the material compresses.  During the 

hot cycle, the atomic structure of the material expands.  Thermal expansion is the growth 

of the material due to increasing the inter-atomic vibrations in the lattice of the material 

[35].  Conversely, thermal compression is due to decreasing of the inter-atomic vibrations 

of the material lattice.  

 The expansion and compression of the individual atomic elements that comprise 

the composite will be different due to the difference in atomic masses.  Therefore, the 

CNT or CNF will expand and contract differently than the epoxy resin.  As the nanofiller 

expands and contracts, the conductive pathway that was present will change during a 

thermal cycle.  In addition, gaps can form from the expansion and compression of the 

composites and these gaps would increase the resistivity of the material due to a 

reduction in the conductive pathway once the material is brought back to RT.  
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IV. Conclusions and Recommendations 

 In conclusion, the CNT and CNF composites were irradiated with neutrons and 

electrons and changes to the lateral and transverse resistivity were explored.  The lateral 

resistivity measurements, consisting of volume and surface resistivity using the four point 

probe measurement technique, are much more consistent and reliable than the ESD test 

developed to interpret changes in bulk resistivity.  A lack of in-situ measurement using 

the four point probe technique is a limitation for this experiment.  The time dependent RT 

anneal observed after the electron irradiation would have benefited from a measurement 

technique capable of measuring during and immediately following irradiation.   

 The CNT composite is the better material for protection against radiation when 

considering the conductive properties both prior to and following electron and neutron 

irradiation.  The CNT is an order of magnitude more conductive than the CNF composite.  

However, the CNF composite is still a conductive material, and provides sufficient 

protection against ESD if used as a structural support of a satellite.   

 The simulated space radiation environment had little effect on both the CNT and 

CNF composite conductivity.  The largest change in conductivity was 3.7% with the 

CNT composite following neutron irradiation.  Less than 1.6% change was observed in 

the CNF composite.  The 25.5% change observed post electron irradiation is believed to 

be effected by the time the measurement was taken.  A lower percent change would have 

been measured if the measurement was taken after RT annealing was allowed to occur. 

Both composite materials are electrically hardened for the space radiation environment.  

 When the fluence of radiation was increased on the composites, the CNF 

conductivity remained constant while the CNT composite’s conductivity decreased.  The 
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most damaging radiation fluence was the neutron fluence of . 

The conductivity had no change in the CNF composite.  However, the CNT composite 

changed by 43% at the highest neutron fluence.   

 The neutron radiation is the more damaging radiation compared to electron 

radiation on the composite materials.  However, the neutron spectrum of the OSURR was 

converted to a 1 MeV equivalent.  If only 1 MeV neutrons were incident upon the 

material, no conversion would be necessary and it would make for a better comparison.  

Only 0.5 MeV electrons were used and a majority of the electrons passed through the 

material causing less damage.   No RT anneal was observed post neutron irradiation due 

to neutron activation of the materials and the inability to perform measurements.  A test 

method that allows for in situ measurements would allow for an investigation into the 

anneal post neutron irradiation.  This would allow for the discovery of the type of defects 

each radiation may produce.   

 Both CNF and CNT composites make for a good replacement for aluminum for 

satellite structures when considering their conductive properties and ability to withstand 

the radiation environment.  However, due to the anneal effect that was discovered during 

the electron irradiation, further investigation should be explored into the prompt 

conductivity changes opposed to permanent changes.  The earliest measurement taken for 

this investigation was two hours post irradiation.  A measurement taken in-situ or within 

seconds post irradiation would lead to a better understanding of the radiation effects on 

the conductivity of the composites.    

 [1] postulated the changes in resistivity on the nickel nanostrand samples were 

due to the chemical changes in the epoxy.  However, through this investigation, changes 
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in resistivity were due to changes in the nanoparticle.  This is evidence by the change in 

resistivity in the CNT composite and no change in the CNF composite with the same 

epoxy in both.  However, the epoxy used in the CNT and CNF composites is different 

than the epoxy used in the nickel nanostrand samples tested by [1] and [2].   A more 

direct measurement should be made on all three nanofillers using the same type of epoxy 

resin to ensure the changes observed by [1] and [2] were due to the epoxy.   
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Appendix A Equating the Electron and Neutron NIEL Effects  

 This appendix will show the steps that were taken to equate the electron and 

neutron NIEL effects.  This allowed for a comparison of atomic displacements caused by 

different radiation types.  The first step was to identify the electron flux in the space 

radiation environment.  According to the table below that was created from MIL-STD-

1809, the electron flux above 0.5 keV is equal to approximately 7 21 10 /e cm s .   

 

Table 13.  Flux values defined by MIL-STD-1809 

 

 

 The electron flux is converted into a fluence by multiplying by the lifetime of a 

satellite in space of 35 years.  The total electron fluence is equal to 16 21 10 /e cm .  Step 

number two is to use figure 3.24 from [29] depicted below.   Figure 3.24 gives the NIEL 

rate for electrons and for neutrons.  1 MeV was used as the particle energy.  The NIEL 

rate for electrons is 2 21.1102 10 /kev cm g .  The NIEL rate for neutrons is 

21.10 /kev cm g .   Figure 3.24 from [29] was created for Silicon.  This introduces error 

when applying it to the composite materials.  However, only an estimate was desired for 

the irradiations.   
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Figure 29. Figure 3.24 from [29].  The conversion factors are depicted.  

 

 The third step is to find the total amount of NIEL the > 0.5 MeV electrons will 

cause in the composite.  Multiplying the NIEL rate by the electron fluence will give the 

overall NIEL in /keV g .  Therefore, the electron NIEL is 141.23 10 /keV g .  Next, set 

the neutron NIEL equivalent to the electron NIEL.  Using the neutron NIEL rate, find the 

1 MeV neutron fluence by dividing the NIEL by the neutron NIEL rate.  The neutron 

fluence equals 14 21.11 10 /neutrons cm .   

 The OSURR does not produce monoenergetic neutrons at the rabbit tube beam 

port.  Due to moderation of the water surrounding the core, a spectrum of neutrons is 

produced.  Figure 30 below shows the differential neutron flux versus neutron energy in 

the rabbit tube beam port.   

 

1.10

1.10 x 10-2
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Figure 30.  Neutron energy spectrum of the OSURR. [34] 

 

 ASTM E722-94 is the standard practice for characterizing neutron energy fluence 

spectra in terms of equivalent monoenergetic neutron fluence.  Each composite sample 

was covered in cadmium in order to shield it from thermal neutrons.  Cadmium has a 

high cross section for absorption for thermal neutrons.  Neutron energies below 0.45 eV 

were assumed to be absorbed by the Cadmium and not included in the neutron fluence.  

The 1 MeV equivalent monoenergetic neutron fluence, Φeq,1MeV,Si is found using  

equation (6).     
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Where ( )E is the incident neutron energy-fluence spectral distribution, ,D SiF  is the 

neutron displacement damage function for Silicon as a function of energy, and ,1 ,D MeV SiF is 

the displacement damage reference value designated for Silicon for 1 MeV.  For the 

conversion for the rabbit tube beam port, Emin was set at 0.5 eV and Emax was set at 1.8 

MeV in place of 0 and ∞ in the integral in equation (6).  ,D SiF  for each energy is found in 

table A1.1 of ASTM E722.  The values in table A1.1 were multiplied by 133.45 10 to 

convert to rad(Si)-cm
2
.  ,1 ,D MeV SiF  is given in ASTM E722 as 95 MeV-mb.  Simpsons rule 

was used to carry out the integral in equation(6).  The resulting 1 MeV equivalent neutron 

flux in the rabbit tube beam port is equal to 11 21.88 10 /neutrons cm s.  Using the desired 

neutron fluence and the neutron flux the total amount of time of irradiation was 

determined to be 9 minutes and 52 seconds.   

 The same 1 MeV equivalent conversion was made for the differential flux 

spectrum for the CIF at the OSURR.  The resulting 1 MeV equivalent neutron flux in the 

CIF is 12 22.57 10 /neutrons cm s .  This higher flux allowed for a much higher neutron 

fluence.  Figure 31 is a flow diagram that summarizes the conversion and uses the results 

of each step described above to find the time of neutron irradiation.   
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Figure 31.  Flow diagram for equating the electron and neutron NIEL effects in Silicon and then 

converting the neutron energy fluence spectra into a 1MeV equivalent. 

 

 

 

 

 

 

 

 

 

 

 

 

Electron Energy [MeV]  Flux [Particles/cm2-sec] Fluence over 35 years  Electron NIEL Rate [keV-cm2-g-1] NIEL

> 0.5 & > 1.0 1.00E+07 1.10E+16 1.11E-02 1.23E+14

Neutron Energy [MeV] Flux equivalent [Particles/cm2-sec] fluence over 35 years Neutron NIEL Rate [keV-cm2-g-1] NIEL

1.0 Equivalent 1.01E+05 1.11E+14 1.10E+00 1.23E+14

1 MeV equivalent flux in Rabbit 

Tube [Particles/cm2-sec]

Desired 1 MeV neutron fluence to 

replicate e-
Time of Irradiation in Rabbit tube [s] Time [min]

1.88E+11 1.11E+14 592.50 9.87

Using NIEL to equite Neutron and Electron Fluence

Step 1.  Determine e- Flux
MIL STD 1809

Step 2.  Determine NIEL for e-

Holmes-Siedle (Fig 3.24)

Step 3.  Match NIEL’s  
between e- and Neutrons

Step 4.  Determine Necessary Neutron 
fluence to achieve equivalent e- NIEL

Step 5.  Convert Neutron 
Spectrum to 1 MeV Equivalent.  

ASTM Standard E722-94 applied 
to Rabbit tube at OSU
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Appendix B Example of Smoothing Routine on the ESD Current Waveform 

 The ESD test output current waveform from the oscilloscope is depicted in Figure 

32.  The waveform is very noisy and does not follow the ideal waveform from [24] 

depicted in Figure 16.  [1] conducts a detailed discussion of the intended output.  

However, due to the S-glass substrate and overall composite samples and associated test 

set-up, a noisy waveform is expected as shown in Figure 32.   

 

 

Figure 32.  ESD current output from the oscilloscope. 

 

 A smoothing algorithm was used to smooth the current waveform.  This allowed 

for a better view and overall trends of the waveform.  It also would keep key features 

such as the early and late peaks for analysis, while throwing out the noise.  A localized 
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linear fit line was used to smooth the data as shown in Figure 33.  The resulting smoothed 

data is easier to analyze.  

 

 

Figure 33.  The original ESD output is plotted with the smoothed data.  A localized linear fit is used 

to create the smoothed data.  
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